
LITERATURE CITED 

i. U~ L. Wilkinson, Non-Newtonian Fluids [Russian translation], Mir, Moscow (_1964). 
2. I.A. Charnyi, Principles of Subsurface Hydraulics [in Russian], Gostoptekhizdat, Mos- 

cow (1956). 
3. A.A. Samarskii, Introduction to the Theory of Difference Methods [in Russian], Nauka, 

Moscow (1971). 
4. G. Astarita and G. Marrucci, Principles of Non-Newtonian Mechanics, McGraw-Hill (1974). 
5. A.V. Lykov, Heat Exchange [in Russian], ~nergiya, Moscow (1972). 

STABILITY OF A CONVECTIVE FLOW OF A VISCOUS FLUID BY THE METHOD 

OF LOCAL POTENTIAL 

V. V. Gorlei and V. A. Shenderovskii UDC 532.516 

A study is made of the stability of convective fluid flow caused by an external 
temperature gradient and heat sources uniformly distributed in the fluid. 

Interest has recently been increasing in the study of convective fluid flow caused by 
internal heat sources. The physical mechanism of heat liberation may vary in different 
cases:Joulian dissipation, radiant heat transfer, absorption of external radiation, etc. 
Together with this, the results in [i, 2] showed the destabilizing effect of viscosity non- 
uniformity. It is naturally of interest to investigate the stability of convective motion 
caused both by an external temperature gradient and internal heat liberation in considering 
the temperature dependence of viscosity. For this purpose, we will examine the convective 
flow of a viscous fluid in a long vertical layer bounded by parallel surfaces x = • main- 
tained at fixed temperatures T = • Let internal heat sources with a constant volume den- 
sity q be uniformly distributed throughout the volume of the liquid. We will assume that the 
viscosity of the liquid depends on the temperature according to the linear law. 

v = v0 (I -- sT), (1) 

where ~o is the maximum value of viscosity reached on the cold (T = --0) surface; a, tempera- 
ture coefficient. 

We will adopt the variational approach to study the stability of the convective flow -- 
specifically, the method of local potential. We will construct a functional having certain 
extreme properties and dependent on two types of variables [3]. In accordance with [4], we 
will proceed on the basis of linearized equations of a perturbed state [i] 

a.~ + ~ ,  au~ ap' _ - [  m m )  , 2 a~ a.~ an" ~ ,  (2) 
a--f- ~ = - -a~- ~ n ~--a-#- + - ~  u~ + ax ax F az ax ' 

~ i _ + _ [ - a u :  _ , a~, I aw ( ~ ~ " , , a ~  a~ ~:  a~" a~, + a~ au: (3) t u | . [ - ~ - - ~ - - ~ - = - - ~ - - + ~  -~-~-+--~F) '+a --~ - ~ - ~ ,  a~ a~  + - T f  a~ ax az +r ' ,  

aT' [ ,  aT . -  aT' ] ' ( ~ ~--~-~T', (4) 
O--T+G ~-~f-+u,-~-]=~T -~+ az 2 ] 

with the boundary conditions 

~(• T(• ~(•177 

Here the units of distance, time, velocity, temperature, andpressure are~ respectively: 
d; dZ/v0; g~qd~/2vopcp%; qd2/2pcp%; g~qd3/2cp%~ N = Qo/Q, w h e r e  Qo = g~Oda/v~; ~,  uz, p r o j e c t i o n s  o f  t h e  
p e r t u r b e d  v e l o c i t i e s  on  t h e  x and  z a x e s ;  p ' ,  T ' ,  p r e s s u r e  and  t e m p e r a t u r e  p e r t u r b a t i o n s ;  
and  Uz,  t h e i r  mean v a l u e s .  H a v i n g  p e r f o r m e d  a l l  m a t h e m a t i c a l  o p e r a t i o n s  s i m i l a r  t o  t h e  
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manner in [5], we obtain an expression for the local potential 
1 +[ ( )] 

[ k dx ~ k dx ] + k*$z + (~ + ikGuz) QOq _ ikq~OQ ~ d x  + k2QZ + ---~- - -  

--1 (5)  

dx dx + ~1~ dx ~ J dx (~" + ikGuz) k2 dx z ] + dx z -r ~]te ~ -dx z- ~ . 

Here the perturbations are chosen in the form 

Ux = - -  ik~ exp (%t + ikZ), 

, d~ 
u~ -- exp (M + ikz), 

dx 

T' = Q exp (%t + ikz), 

�9 p' = h exp (%t + ikz), 

0' ux = - -  ikt~ ~ exp (%t + ikz), 

o" d~o uz = - -  e x p ( M + i k z ) ,  
dx 

T o' = Qo exp (~t + ikz), 

pO, = h o exp (M + ikz), 

where ~ and Q, h are certain functions of the variable x; k, wave number; % = %r + i%i, com- 
plex decrement, while the superscript 0 pertains to invariant quantities. 

The temperature and velocity for unperturbed motion entering into functional (5) were 
found earlier in [6] and are determined as follows: 

Here 

- 1_~ Ix ~ _  F (x) 1 T = N x +  1 - - x  2, u , =  1 - - N ( x +  1) + [ J o ( x ) - - d o ( - - l ) l C + Z l n  F( - -1 )J"  
6~, ( 

F ( x ) = y x Z - - y N x +  l - - y ;  A ~ 4 y ( 1 - - y ) - - ~ 2 N Z ;  

{ C = - -  2N + Z l n  F(1) { 4 ( - -  1 ) - - 4 ( 1 ) } - ' ;  

Z =  { 4 + 3 N 2  N I n F ( - ~ -  1- ) } _ . F(1) • 

3 "t' [Jo (--  1) - -  Jo (1)1 

X In F(1) [Jo(--  1) - -  Jo (1)]-1+ 4-[- ~ [do(-- 1 ) -  Jo(1)] ; 

27x - -  7N 2 arctg 4 v (1 - -  ?) > y2N2; Jo(x)- VS- V T  ' 

2 In 2"~x - -  yN - -  V - - A -  ?2NZ > 4 2 (1 - -  y) 
So (x) - 2 w - - r  + V -A ' 

and F(+I), Jo(+l) are the values of F(x) and Jo (x) at the boundary points x = +i. 

Since the flow being studied consists of opposite convective currents [6], there are 
grounds for reasoning that its critical value (Recr) is connected with a hydrodynamic mech- 
anism [7]. Thus, the stability of such a fluid motion should be determined in a purely hy- 
drodynamic formulation, ignoring thermal perturbations Q and their effect on the development 
of hydrodynamic perturbations. We should note that such an approach is valid within the re- 

gion of low Prandtl numbers. Let Us set Q=dQ.= dZQ�9 = 0. in (5) and choose test functions 
dx dx 2 

for ~ in the form 

Substituting (6) 

2 2 

, = ~ A,x' (1 - -  x~) 2, r = ~ A~ (1 - -  xZ) z. 
i = 0  i = 0  

in Eq. (5), satisfying the conditions of stationariness 

(-) 0, =0, (-) - 
- ~ -  0 , 1 2 2  

0, 

(6) 
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Fig. l. Dependence of critical Grashof numbers G k (a) 
and critical wave number k m (b) on degree of nonuni- 
formity of viscosity Y for different N. 
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Fig. 2. Phase velocities of 

neutral perturbations c i = 
(~i/kG).10 -2 for different y 
and N: i) N = 0; 2) 0.25; 3) 
0.5; 4) 1 at Y = 0. The dashed 
lines 1'-4' are for y = 0.5. 

and using the auxiliary conditions A~ = Ao, A~ = At, A ~ 2 = A2 for a neutral perturbation regime 
where X r = 0, with h i = f(y, N, k, G), we obtain the following expression 

~L~ + ~L2 + 9L~ + io : O, (7) 

where y = klG 2, and Lo, LI, LI, Ls are expressed in complex form through integrals of Uz and 
and power series in x. It should be noted that Eq. (7) makes it possible to determine the 

critical Grashof numbers G k and critical values of the wave vector k m satisfying the condi- 

tion of neutral stability. 

Let us discuss the results obtained. Figure la shows the dependence of the critical 
Grashof numbers G k on the degree of nonuniformity of the viscosity y for different N. It is 
apparent that an increase in Y at any N leads to a decrease in Gk, i.e., to a reduction in 
the stability of convective flow. Meanwhile, the lower N, the higher lies the corresponding 
curve. It should be noted that with a constant viscosity Y = 0 in the boundary layer and the 
absence of an external temperature gradient (N = 0), we obtained a critical Grashof number 
G k = 1651 for the test functions (6), while G k = 1712 if the basis functions are chosen in 
the form of the amplitudes of perturbations in a quiescent liquid [8]. This agrees fairly 
well with the results in [7] (G k = 1720), where the authors employed the Galerkin method, 
using 16 basis functions. 

As concerns the wave numbers k m (Fig. ib), with an increase in y they shift in the di- 
rection of larger k, i.e., into the short-wave region. If there are no internal heat sources, 
then an increase in viscosity nonuniformity is accompanied, in accordance with the results in 
[2], by a shift of the minimum of the neutral curve for hydrodynamic-type perturbations in 
the direction of long-wave perturbations. 

As was shown in [6], the structure of the velocity profile depends considerably on the 
value of N. For N = 0, e.g., accounting for viscosity nonuniformity leads only to an in- 
crease in the flow rate, without changing its symmetry. The velocity profile begins to be 
restructured with an increase in N (becoming two streams instead of three):and, apart from 
an increase in the absolute value of the profile, it also becomes asymmetrical. The latter 
obviously leads to a more unstable fluid motion. 
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The features of the unperturbed profile Uz also affect the phase velocities of neutral 
perturbations. For N = 0 for example in the case of constant viscosity, the phase velocity 
changes sign with a change in the parameters along the neutral curve (Fig. 2) so that the 
point k = 2.61 (versus k = 2.65 in [7]) corresponds to a neutral "standing" perturbation. 
With an increase in y, standing perturbations are shifted into the shortwave region. For 
example, at Y = 0.5 and N = 0, k = 2.62. For other values of N~0, perturbations with a 
phase velocity equal to zero cannot exist (Fig. 2), i.e., the perturbations drift along the 
flow. We might point out the oddness of the profile in the special case N = i and y = 0.5 
[6], and "standing" perturbations are again possible for k = 0.82. 

NOTATION 

p, convective pressure reckoned from the hydrostatic pressure at the mean density p; ~, 
kinematic viscosity coefficient; B, X, coefficient of linear expansion and diffusivity, 
assumed constant; g, acceleration due to gravity; Cp, specific heat. 
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DEPENDENCE OF THE MASS TRANSFER DURING DISSOLUTION OF AI~ROUGH 

WALL IN A PLANE CHANNEL ON THE STRUCTURE OF THE STREAM 

L. A. Polyakova and V. G. Shakhov UDC 66.015.23:532.5 

A channel wall with a sinusoidally rough surface is considered and the location 
of the point on this surface where the diffusion current reaches its maximum is 
determined, depending on the Reynolds number as well as on the roughness wave- 
length and amplitude. 

The equation of vortex transport for the flow function ~ and the boundary conditions for 
steady two-dimensional flow of a viscous incompressible fluid through a plane channel are 

0~ +2 0~ -4- 0~ 1[ 0~ 0A~ 0~ 0A~] 
Oz ~ Ox20y - - - - - - T  ' Oy - - T  = -~ Oy Ox Ox Oy ' ( 1 )  
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